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Abstract

This report deals with the radiation from arbitrary source
distributions in plane stratified, anisotropic media. The formal solutions
are obtained by an extension of modal procedures familiar from the analysis
of isotropic waveguide regions. Special attention is given to the formulation
of a radiation condition which requires the flow of energy away from the
sources, and to its interpretation utilizing the refractive index surfaces
descriptive of plane wave i)ropagation in an anisotropic medium. These con-
cepts are illustrated in detail for an ionized plasma under the influence of an

external steady magnetic field.
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I. Introduction

The propagation of plane electromagnetic waves in regions with
anisotropic permittivity or permeability has received considerable atten-
tion in the literature ~ the former in connection with the study of the
optical properties of crystals1 and the electromagnetic behavior of the

2, 3, and the latter in connection with magnetized f,errites4.

ionosphere
In these applications, the sources of the fiei,d have been of minor concern,
and emphasis has been placed on‘the determination of the wave spectrum N
in the region, However, some recent problems — for example, the in-
vestigation of discontinuities in ferrite or plasma loaded waveguides,
Cerenkov effects due to moving charged particles in a magneto-ionic
mediums, or radio communication from satellites passing through the
ionosphere — require a knowledge of the radiation characteristics of
localized sources,
This report deals with the radiation from arbitrary time harmonic
source distributions (varying like exp(jwt) ) in a transversely unbounded
region filled with a dielectric medium characterized by a tensor permittivity
€ as shown in (l). The permeability U is assumed to be constant. ¢ may
be a piecewise constant function of the longitudinal variable z, thereby ad-
mitting linear stratification. By an extension of the modal procedure described
for isotropic regions by Marcuvitz and Schwinger6, the transverse (to z)
electromagnetic fields Et (x,y,2z) and }__{_t(x, Y, z) are represented as a super-
position of orthogonal transverse vector mode fields having the form Vi(z)Ei(x, y)
and Ii(z) Ei(x, y), respectively; each mode is a solution of the source-free
Maxwell field equations. Because of the infinite extent of the cross-sectional
(x - y) domain and the non-variability of ¢ with x and y, the transverse vector
mode functions Ei and Ei have an exponential dependence of the form exp(j€x+jny),
where the modal index i (£, n) is continuously variable. As regards their
vectorial characteristics, the modes are found to separate into two sets, ®ordinary®
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and ®extraordinary® (see Appendix A), in terms of which the electromagnetic
fields can be represented as in (7a,b), The modal amplitudes V and I are
found to satisfy the first-order differential equations (8) (transmission line
equations), thereby permitting the use of network methods in their determina-
tion. The continuity requirements of the tangential electric and magnetic
fields across an interface between two different anisotropic regions, or the
imposition of boundary conditions at a terminal surface of the region, give
rise to coupling between the ordinary and extraordinary modal amplitudes.
Their system.atic calculation via equivalent network proéedures is gmphaaized
in Sec. Il

The transmission line equations (8) descriptive of the spatial behavior
of V and I in each layer contain as parameters the propagation constant o and
the characteristic inﬁp‘e’danlce Z. As shown in Appendix A, 9 in an anisotropic
medium is generally a complicated multivalued function of the transverse wave-
numbers (§, n). Its proper definition on the integration path, essential for a
unique specification of the fields via the modal representations (7a,b), is ac~
complished by recourse to a radiation condition which requires that the energy
flow due to a localized source distribution is outward from the source region.7
The associated restrictions on ¥, complicated by the fact that the directions
of energy and phase propagation generally differ in an anisotropic medium, are
discussed in Sec. III - - both analytically, and through use of the refractive
index surfaces for the medium which specify the variation in refractive index
as a function of the direction of propagation of a plane wave. Special attention
is given to the case of a plasma under the influence of a longitudinal d, c.
magnetic field, and to the effect of the plasma parameters in determining the
propagation characteristics of electromagnetic waves. The definition of the
multivaluad function ¥ for various plasma parameters is examined in detail
in Sec. IV, thereby rendering unique the formal solution of this class of
radiation problems.

The results of this analysis have been applied elsewherea' 9 to the
detailed study of the radiation field of an electric current element in an infinite,
and semi-infinite, homogeneous, anisotropic plasma medium,

Investigations by other authors have been concerned primarily with
the study of radiation from infinite, semi-infinite, and single-slab anisotropic
plasma regions. For orientations of the gyrotropic axis perpendicular to the
interface, the foi'mal solutions for these. configurations emerge as special cases
of our analysis. While the imposition of a radiation condition is essential in the
formulation of radiation problems in infinite and semi-infinite regions, the de-

tailed discussion of its effect on the proper specification of the representation
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integrals as carried out herein has generally been omitted by other authors. With

10 Bunkin,

y Mittra and Deschampsls. Clemmow16’ Motz and

reference to the infinite medium problem we cite the work of Abraham
Kogelnik!?, Kuehl'?, Mittral?
Kogeln:lk”, Chowls. Abraham® has employed a two-dimensional Fourier integral
representation for the fields similar to that presented here, and has also pointed
out the utility of the refractive index surfaces in dealing with the radiation condition;
his analysis in connection with the latter does not; however, enter into the function-
theoretic quéations treated in Secs. III and IV, The approach of the other authors
(except Clemmow) differs in that they proceed via a three-dimensional Fourier
integral formulation which, though imbued with a certain formal elegance for the
infinite medium problem, appears less convenient for an asymptotic analysis of

the radiation field, and also seems not directly suited to the atudy of stratified |
media., Radiation from dipo_le sources in the presence of an ahi’sotropié pﬁama |

19 8

half-space has been analyzed by Barsukov ', Arbel , and Tyras, Ishimaru, and

Swarmzo. I-Iodara.21 has recently been concerned with the problem of radiation
through an anisotropic plasma slab; he employs a two~dimensional Fourier trans-
form procedure but omits any function-theoretic discussion of the type mentioned
above, It also seems that the matching of the boundary conditions at the slab inter-
face and at the source could be more easily achieved by the network procedure ’
described here, as may be seen from the analysis of Wu22 who has used the network |
approach for the slab problem. Several studies of the simpler problems of radiation i
by specially oriented line sources in a gyrotropic medium23' 24', zgr of radiation in
a plasma subjected to weakzo(wc-* 0 in (35)) or stro%xize,’ 217,28, 29(mc-‘ ) external
magnetic field have likewise been carried out.

Green's function representations for general anisotropic waveguides

have been obtained by Bresler and Marcuvitz3o

via abstract operator methods. For
the special class of problems herein, our procedure, though less general, yields

the result more directly and by conventional methods.

— .
The authors are indebted to G. Meltz of the Air Force Cambridge Research
Laboratories for calling this reference to their attention during the preparation

of this manuscript.
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II. Formal Solution

a, Reduction of the field equations

v Consider an arbitrary (but prescribed) distribution of time-harmonic

sources of electric current J(r) and magnetic current L_A(E_) in a medium com-
prising a series of transversely unbounded, parallel anisotropic layers (Fig. 1).
A coordinate system is chosen so that the z-axis is perpendicular to the layer

( See Fig. 1in Appendix C)

interfaces, and each layer is assumed to be characterized by a scalar

permeability K and a tensor dielectric constant

e el
ala)_ a(a) 2(a) 2(a)
€ = & +z z ¢ » [ ’ (1) ;
~ -t o-0 2z t -jf (a) :(la) ‘

where (a) denotes the a-th layer, gt is a transverse (to z) dyadic whose
representative in an x-y coordinate system is as shown, and z, is a unit

vector along the z-direction. These dielectric tensors have the form appropriate
to an ionized plasma medium under the influence of a d.c. magnetic field along

the z-axis. We seek a solution of the steady-state Maxwell field equations
V % E(a) = 'jwl-‘-o}_{.(a) - M.(u) , V x g(a) = ng(n). E(a) + .{(n) , (2) ‘

in each layer, subject to the required continuity of the transverse electromagnetic
fields _E_t(:') and I_-I_iu) at each interface, to prescribed boundary conditions at the
z-termini of the region (if any), and to a radiation condition at infinity, A time
variation exp(jwt) is understood throughout.
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If the configuration in Fig. 1 is viewed as a waveguide with axis
along z, the formal solution of the boundary value problem in (2) can be

effected by an application of guided wave techniques developed for isotropic

6, 30, 31

and anisotropic regions. First, by taking the scalar and vector products of

Eqs. (2) and the longitudinal unit vector z,» one derives after some rearrange-
L]
ment the equations for the transverse field components (note: z X 1 Et = £t Z X 1),

°E, AN A
TEE T Mo L T Hexze t M X E, (3a)
oH, A2 .
-—.5?-= Jwe £t+-—2—— : _z_oxl_E_t-l' -z-ox-lt ’ (3b)
‘ k

from which the longitudinal components can be obtained via the relation,

1 | = 1 .
E, = Jwe [vt' (}—{tx E-o) -Jz] o Hy = Jep_ {vt ("z‘°x§t) -Mz] .
: ° (3c)
(a)

have been omitted, and the following definitions have been introduced:

To simplify the notation, the superscripts identifying the various layers

RN A SR LF) -“_ 2 2 2
f-t"T-t—) ce g, = = EOCZ s Kk —kocz , ko-wuoeo.

-je €
J€2 1/, (34)
where £, is the dielectric constant for free space, €, is the normalized

longitudinal dielectric constant Ez/co » and € 2 = €1 2/: are normalized to
H] L

e, X Vt = (V - z, 8/9z) represents the transverse gradient operator, -l-t the

transverse unit dyadic, and

A 1 _ - 1
L =3 - fep 2o UM, » M, = M+ ot 2o X Vi J, o (3e)

are equivalent transverse electric and magnetic source current distributions.
Next, we seek a representation of the transverse field components in

terms of a set of transverse vector eigenfunctions which are complete, orthogonal,

and individually satisfy the homogeneous field equations and the required boundary

conditions, in the transverse domain. As shown in Appendix A, the electric mode

* For the plasma case, normalization to ¢ implies that £, = 1t in the absence

of an external d, c. magnetic field (see Sec. IV).
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functions € and the magnetic mode functions h comprise a continuous dis-
tribution of plane waves whose vectorial characteristics can be grouped into
two categories, "ordinary" and "extraordinary®, to be denoted by the subscripts

o and e, respectively:

k(€ x + ny) '
Ty o luyitim) = e (&,m) X - <(E,m)<o , (4a)

—O.e

Kk e~ JK(E X + nY)

Eo.e(xnv:§.n) = _lzo.e(ﬁ.n) —5= = - (4b)
'whei'e

- OziA, + SJ-Z_( x 2z ) = x € + (4c)
3 Favzo — a0 e ' T Fo ol
bk s A g4 g A o = ¢2 +n° (44)
¢ T° o 2Vz 6o ~°
and

. e,

6 = le__l_ . A = /;4+462 (1-"02) sgn(t‘l -.1). (4e)

While the eigenvalue problem could have been treated for general dissipative

media?o'the above analysis has been restricted to the lossless case for which

. € € and ¢, are real. It is noted that the wavenumbers £ and w have been

normalized to k, thereby implying that €¢> 0 and k>0, The modifications
introduced when ¢ <0 are discussed at the end of Appendix A. The orthogonality

"properties of the position vectors 2o e and -l:‘-o e differ according to whether A

’ L
is real or imaginary (the square root in (4e) is defined to be positive when real

and negative imaginary otherwise):

* %
e

3o'£ox£o =1, —o'hsxﬁo =0 , A real ,
e e e
(5)
%k %
Eo'_l_l_ox_z_o=0, thgxi =1 |, A imaginary ,
e e é ‘

where the asterisk denotes the é:,omplex conjugate, Thus, the mode functions
in (4a, b) satisfy the bi-'orthcl--';;;‘oﬁ;.{l%tv relation,

PRI
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L= e hxaz s(E-EN8(n-n") , (6)

which, upon insertion of the appropriate modal subscripts o or e, is simplified
further from (5). .
The various vector functions in (3a, b) can now be represented as
follows: l
o0

E,(xy,z) = z-k;f {odn V (26, m)e (E,n) +V _(z:6.m) e (£, ﬂ)] jk(ﬁ""'ﬂ)’)

- 00

Hyaya) =7 [ e dn [1 (360 2 (6 0) +1, (5. b (6. n)]_“j“‘i;‘;“"’

0 0
0 X J(x.y.z) 2‘-‘; fd(_‘,fdn i (zi6, )b (€, m) + 1 (z:6,n)h (&, ,,)] -jk(€ xtny)

T¢)
M, ( - & fae Fanlv g, me (6um) +v (26 m)e (£, m}e IK(ER+NY)
Moyl xz, = gp JdE ) dn| vplzibimle (82 m) +vp(ziba e (e m)fe 1) .

The completeness and existence of these representations (for spatially confined
source distributions) in the (x-y) function space follows from the theory of the
Fourier integral and from the field behavior at infinity, while that in the 2x2
vector space is assured by the linear combination of the e- and o- eigenvectors,
Upon substituting Eqs. (7a-d) into (3a, b), interchanging the orders of
differentiation and integration and noting that the operator Vt can then be
replaced by -jkg, one may equate the resulting Fourier transforms on both
sides of these equations, Dot product multiplication of the first and second

of these equations with (_1_1_*;’ e X 30) and (10 x 3”"0, e), respectively, and use of
Eqs. (A4 ) in Appendix A and of the orthogonality relations (5) then yields the

following expressions to be satisfied by the transforms Vo e and Io e
? 1
dv .
= dz = ik¥ZI+v , -—g}z——=jk9(YV+i . (8)

These equations, valid separately for both the o- and e- modes (for real or
imaginary A), can evidently be interpreted as transmission line equations,
withV, I, f, Z, and Y playing the role of voltage, current, normalized

propagation constant, characteristic impedance and characteristic admittance,
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respectively, while v and i represent voltage and current generator
distributions (Fig. 1(b)). ¥ and Z = 1/Y are determined from the eigenvalue
problem in Appendix A as

! 2. i
¥ o= ‘!Ui viow o, Y, =X, 4% s & = J—, (8a)
2 e e &A” +04)
where
e, +1 CZ Ez
: 2,, 2 2 2 1772
U = Cl" —1_2—— UZ ) W = 51(1'0)(02 "0) » Uz = —"——c'i—_“' . (Sb)

\/ U2 - W can alternatively be written as (cl - 1) (A/2). The voltage and

current generator strengths are evaluated by inverting Eqs. (7c, d) via (6):

‘ ® o e - ©w % - .
ij= faxfaye -3, v = [axfdy B - M, , Arel (9)
e =00 =00 e e -00 00 e

—% ok — % %* . ek
. 0] 1 .
For imaginary A, Lo, e and 1_10’ o 2T€ replaced by Le, 0 and Ee, o' respectively

From the two-dimensional divergence theorem

00 0 *e] 0
Jaxfdy A-V £ = - [dxfdytV + A + HdsfA n,
~00 00 - t -0  ~00 t = 8

where A and f are suitably continuous vector and scalar functions, s denotes a
contour bounding the transverse cross-section at infinity in the x-y plane and n
is a unit vector normal to s, one observes that if f = 0 on s, the double integral
on the left-hand side is equal to the double integral on the right-hand side. Upon
applying this result to Eq. (9) (after substituting (3e) and assuming that .]'Z and MZ

are spatially confined sources), one obtains alternatively,

i o= J - e dxdy - — M_e - o0xz_dxdy (9a)
2 Jwle~t —¢ Wh %t 27¢ — O ’
Q o0 % 0 o A
—% k
v = M, h_ dxdy - fJ h xuz * g dxdy (9b)
g " LS Mo By ey o [ TaBgx '

which result can now be applied also to discontinuous current distributions.
The proper definition of the multivalued function 3 (s, and the dis-
position of the integration path in (7a, b) in relation to its singularities, will

‘One observes from Eqs. (4c, d) that the analytic continuation of the functions
g_g e and hg e from the domain of real A into the domain of imaginary A yields the
functions s*’ o and h* o’ respectively, evaluated for imaginary A. Thus, it suf-
fices to evalhate the 3iscontinuously represented inner products in (9) for real A
and continue these functions into the imaginary-A domain. The same is true for

other inner products encountered later on.
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be discussed further in Sec. III, For the present we note only that %, and .
Xeare associated respectively, with the + and - signs in (8a), and that JU - W

is defined to be positive when real, When ¥ has an imaginary part, the

associated wave is non-propagating (along z), while 3{ real represents a

propagating wave, Since i and v are specified in terms of known quantities,

the solution of the Maxwell field equations (2) has been reduced to the solution

of the transmission line equations (8) in each layer, subject to the required

continuity conditions at each interface and to the specified boundary conditions

at the z-termini of the region,

b. Solution of the modal network problem

At an interface between two different anisotropic regions, the re-
quired continuity of E, and H, in (7a,b) can be achieved by assuring the
continuity of their Fourier transforms. If parameters pertaining to the two
regions are distinguished'by superscripts a and B, respectively, the boundary
conditions are satisfied if

kMPM)Jd+Vm)gq]==kw)[ﬁmem>+VW)4m] ' (10a)

o —0 e —e o —0 e —e

k(ﬁ)[l(n)h(a) . {0 h<°)] T [I(a)'hm) . B (B ] , (10b)
o —o e —e 0o —o e —e

provided that the normalized transverse wave numbers in the two regions are

related via
N I G I B C I N N I (10c)

In view of the orthogonality relation (5), Eqs. (10a, b) can be reduced to the

matrix form:

V(“)-l _ aly t t
rle| ° T e | T, t:; t;; , (1)

where ¥ andT are the column vectors

Y véi) o (i)
V(l)-» (i) » I (1)‘9 Io. i = a p
.ve ' I(l) ’ ’ I (lla)
e
while Tz is the impedance transfer matrix. The matrix elements tij ’
ijj = a,B, are themselves 2x2 matrices whose elements are given by:

* It is implied that §, n in the integral representations (7a, b) are replaced
thr({ughout by the appropriate §(l), n(l), i=a,B, whence Vgu)e = Vo e(z; §(‘°), 11‘(0)),
’ 1 4 *

(B)
Vo' e = Vo' ol2 6([3). ‘n(p)), etc. This is to be borne in mind when interpreting

formulas involving parameters with different superscripts.
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tap = tpu =0 , (11b)
@ [ B, B g O]
= (a0 @ |
%* &)
* L P-Sau) *Zo° Egp) Ee * Zo | 39 -
I R SR SR "
tan™ . .
G () | -"-(ea)*' hgﬁ) x z, E(ea)* . Egﬁ) x 2, |

' Expressions (llc, d) apbly for real or imaginary A (see footnote on p. 8). Since

the submatrices tea and tup are not diagonal, the ordinary and extraordinary
modes are c?upled at the interface. Because 'toﬁ = tpu = 0, the coupling occurs
in a particularly simple manner and can be schematized in terms of the trans-
former network shown in Fig. 2. It is also noted, in view of the symmetrical
character of Eqs. (10) as regards a and f, that the elements of the inverse
matrix T;l are given as in (llc, d) provided that the superscripts a and § are
interchanged throughout.

In the interior of each slab region, the equivalent modal network
comprises the two transmission lines representative of the o- and e-modes,
respectively, as shown in Fig. ib). If the slab in question has a length d,
the impedance transfer matrix 'fz for the slab region is cbtained from simple

transmission line theory as follows:

' t t
£, 1 12 ’ , (12)
ta  f22

where the 2x2 submatrices tij’ i,j = 1,2, are diagonal and are given by

~ ~
tll = tZz = cos (k'a, d , Y t); = Z 1:21 = jsin(k 'a d). (12a)

~ ~n
% and Z are the diagonal propagation constant and characteristic impedance

matrices, respectively,

v o 0 - 1
"o . z = ¢ — ° . (12b)
0 ﬂe -0 z,
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a
The matrices in (12a) are interpreted by recalling that if9{ is a diagonal
matrix, with elements . @ matrix f(}?) is also diagonal and has as its
elements f (‘M’i) 6ij . The voltage and current vectors V( 1) and 1 "'(1) at the slab

face z = z) are then related to the analogous quantities at z = z, via

—_— - ]
v(l) = '; V(Z) . z, -2z, = d>0 . (12¢)
T 1 1@ ¢ 7l
Repeated application of Eqs. (1ll) and (12) allows one to express the voltages
and currentsv at any point 2, in the region in terms of the voltages and
currents at any other point g The overall transfer matrix descriptive
of the network between zq and ,7‘(3 is then composed of the ordered product
of the tranafer matrices of the network constituents in this region,

If the region is terminated at z = z in a plane surface on which

E_ and }jt are related by the boundary condition

E (py2) = Z-H (pz)xz (13)

~o
where the transverse dyadic Z denotes a constant anisotropic surface im-
<

pedance whose representative in an x-y coordinate space is

T

- i , (13a)
\"‘21 %22
/S

then the corresponding relation between v, o and I o at2z= 0 is given
L ’
via (7a, b) by

Vo£o+ve3e = Z- (Ioho+lehe)xﬁo . (14)

Use of the orthogonality relations (5) allows one to deduce the terminal

A
impedance matrix Z s for this structure as

= Z , (15a)

where for real or imaginary A (see footnote p. 8),

3 -

b Z -+ h *
-~
z—=r . " . (15b)
8 h™ x z - Z X z h *+Z+h _x
—e —0 =' .b.o -0 Se®ZoT £ 2e*%,

% In this equation, the superscripts refer to quantities at different z - locations

in the same region,
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It; is to be noted that even a scalar surface impedance Z' (for which g.. = ltz’, Z’ =
constant) couples the o-and e-modes (see Eqs. (4c,d)). Only when Zs =0,
(short or open circuit) or when 0= 0 (normally incident plane wave) does the
coupling disappear. P

It is frequently more convenient to deal with a traveling wave representa-
tion involving incident and reflected waves rather than with the standing wave re-
prele'nta.tior; employed above. The required transformations, well-known in
linear network theory,3 are summarized below, Let

V=3+5, 1=YG-% , (6)

where the wave vectors a and b distinguish the amplitudes of waves traveling
to the right and left, respectively (see Fig, 3),

aO o

a—-> ’ R . (16a)

2e be

-~ .
and Y is the characteristic admittance matrix (see (12b)). Then the scattering
transfer matrix T. provides the direct connection between the incident and
reflected wave amplitudes at terminals a and B as follows

(a) .
5 = T 5P , T, = | Taa Tap |, (17)

5 (a) 1z "sa  Tep

~ where the scattering transfer matrix T. is related to the impedance transfer

matrix 'I‘z in (11) via the linear transformation

r o 1 -z@ - i1 -
* Tl sl | semam|

»
1 denotes the 2x2 unit matrix. When applied to an interface between two
anisotropic media, tCLp = tpa = 0 from (llb), and (18) yields the following

expressions for the 2x2 submatrices Tij :

Taa * -%—[ ta t z(® tap f(ﬁ)],__ Tap ' (19a)

Tnﬂ = —i—[ ta - i(a) 1:pp ‘?(p)]= Tﬁa . (19b)
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| For a slab of length d, the scattering transfer matrix Ts corresponding to'
Tz in (12) has the simple diagonal representation ‘
- . T 0 i »
T..-’ 1 ’ T ¢ e J “ d ’ e+j Kd (20)
' 0 Ta2
: -~
with X defined in (12b), Like the impedance transfer representation, the
scattering transfer formulation is well suited to the analysis of cascaded

networks as:encountered in stratified media.
If the sources are located in a semi-infinite medium, the reflection
phenomena are analyzed conveniently in terms of a scattering matrix representa-
tion which expresses the outgoing waves at terminals (a, B) in terms of the -

incoming waves via the scattering matrix f P

a) 7 () ‘

E( = f [ a . f _ 8aa fap | . (21
(P )
* L ® ®8a  pp

The scattering matrix elements are related to those of the T, matrix via

_ -1 - . -1 ) | I |
ac * Tap "B * ®ap " Taa " Tap "PBTBa ' "Ba” Tpp ' "pp ~ "TEp "pa -
The above equations can also be used to describe an interface between
an anisotropic and an isotropic medium. In this instance, it is more convenient
to employ in the isotropic medium the linearly polarized E and H modes described
in Appendix A. *

(See Fig. 3 in Appendix C)

*Explicit expressions for the various coupling matrix elements, obtained
after carrying out the operations and substitutions in the text, are given in

reference 8. These rather cumbersome formulas are not listed here because

of space limitations.



PIBMRI-1069-62 4 14

[II. Radiation condition and specification of X

It was noted in connection with Eq. (8a) that zt is a multivalued

function of (§ + 2)1/2

fied if the integral representations (7a, b) for the fields are to be rendered

= 0, and that its analytic properties must be speci-

*
unique. The definitions

VU+ Vo2 - w - \/U+(=171)A/z, (23a)

3(°=_
x = \[ . Vul-w =‘\/U-(el-1)A/2, (23b)

with U, W, and A specified. in (8b) and (4e), respectively, imply that X has |
branch point singularities at U = W (A=0) and at those values of 0 for wh1ch
xo = 0, while ‘x has branch point singularities at A = 0 .and at those values
of O for which X = 0, Although the branch pomt at A = 0 occurs in both the
ordinary and extraordinary integrals in (7a, b) , the sum of the ordinary
and extrordinary integrands is an even function of A and therefore single-
valued at A = 0. This evenness, resulting from the fact that all ordinary
quantities differ from the corresponding extraordinary ones only by the
algebraic sign of A (see (4c,d), (8a,b) and (9)), implies that a series ex-
pansion of the combined integrand about A = 0 contains only even powers of
A, whence A = 0 is a regular point. Thus, no special care need be taken in
the definition of )(o’ e 3t & = 0 as regards the total integrand; if the ordinary
and extraordinary integrals are treated separately, one may introduce con-
venient branch cut configurations relative to the branch points at A = 0 which
render the integrands single-valued on a Riemann surface associated v.vith
this singularity.

*In plane stratified media, Vo. e and Io, o TAY also poisess pole singularities
on the integration path. For the case of a single interface, these (surface
wave) poles have been discussed in reference 8,

*%*The two terms in the integrand of (7a) give rise to separate contributions
which will be called ordinary (subscript o) and extraordinary (subscript e),

respectively. Analogous considerations apply to (7b).
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For a region comprising a series of slabs of finite width along the
z-direction, the voltage and current solutions may be even functions of the
propagation constants X(“)e in cach slab. In this case, the points
where ®, (°‘) = 0 and i(u = 0, are regular, The situation is different, how-
ever, if one of the regxons extends to z = £ ©, In this instance, the integrands
are not even functions of the appropriate propagation constant, and the matter
of the definition of x must be studied in detail. The investigation is di-
rectly connected with the specification of the boundary condition at |z|-—->oo
Congider a homogeneous anisotropic region which occupies the half
space z; < z < , and assume that all sources are located in the space
z < z, where z, > z,. Then the solution of the transmission line equations (8)
at points z > zz comprises traveling waves characterized by the functions.
exp (-j k‘x z), where k and ‘)t e have the values appropriate to the reg:on
in question. a.nd k is assurned to be pontwe. The integration in (7a, b) extends
over all real values of 0 (see Appendix B), One notes from (23a, b) that O%
and Ofe may be either real. imaginary, or complex, depending on whether
xi’ e is positive, negative, or complex (the latter case obtains when Uz < W,
i.e., A is imaginary). For those values of 0 for which 3(0 or xe has a non-
vanishing imaginary part, the requirement

Im 7(0, e < 0 (24)

assures that the fields remain finite as z—) ® and serves to define the multi-
valued functions xo, e The associated mode fields decay exponentially with
increasing z and represent a non-propagating wave,

If 9(0 or )(e is real, the exp(-jk 9(0’ ez) solution represents a pro-
pagating plane wave. Since all sources are confined to the region z< Z,, there
must be a net flow of power toward z = © and it appears plausible to suppose
that the power flow vector for each constituent propagating plane wave likewise
has a component along the +z direction, It will now be shown that the latter
condition follows from the former, i.e., that net total power flow toward z = ®©
implies that each propagating plane wave carries power in this direction. This
radiation condition (see also reference 7) then permits the unique determination
of Mo, e OVeEr the range of 0 for which the propagation constants are real. It
must be emphasized that the "energy radiation condition® is distinct from a
"phase radiation condition" since the directions of phase and energy propagation

in an anisotropic medium are generally different,

ED
In view of the remarks at the end of Appendix A, the conclusions derived herein

can easily be adapted to imaginary k. In that case, exp(-jk®z)—)exp(-j|k|atz),
etc.
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The requirement of net outward average power flow Pc through a
plane at z = ¢c> Z, where c is a real constant, can be phrased as
0 0 %
= . > =
P Re-oj; dx_!o dyz_-S(xy, )20, §=E xH , (25)
where S is the complex Poynting vector. Upon substituting the integral
representations (7a, b) into (25), interchanging the orders of integration

and recalling the orthogonality relation (6), one obtains:

' * 3 o *

P_ = Re f[at an [v010+ vexe] + szdg dn [v01e+ve1°] >0, (26)
{freal ‘ . Kconplex | ’

where the first integral extends over that portion of the 'g =1 pi"a‘.ne for Which

’)Qi e is real (A real), while the second extends over the remaining region
L

wherein ¥ is complex (A imaginary). Since
-k A, o2
Vo, e(z) = C e , 2>z, R {(27a)

o, e

2
o, e

where Co and Ce are constants, one notes from the transmission line

equations (8) (or from the equivalent network picture in Fig. 1{b) ), that

Io,e(z) =Y v (z) , z> z, , (27b)

o,e O,e

so that (26) can be written as:

2 2 * *
P_ = Re{ [[dt an [Yolvol +Y | V] ] + [ [ag an [Yevevo+yovove] 20.

real K compex (28)
From (23a, b),
2 *2 .
N, =X, when A is imaginary, (29a)
* .
so that 3(0 = % )(e . Since 920 and Re must both have negative imaginary

parts (from (24) ), it follows that

* A .
®n, = - 9¢e y Im 3?0’ e <0, when A is imaginary, (29b)
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.whence, from (8a), Yo = - Y:. Hence, the integral over the range of

complex 7(‘2 , which arises from a coupling of the ordinary and extra-
ordinary mode energles, is imaginary and does not contribute to P If (
3(2 and (or) 9( is negative real, i.e., }f and (or) X is 1magmary,

then Yo and (lor) Ye is also imaginary (see (8a) ) and the resulting integral
does not contribute to Pc' Hence, (28) can be simplified to:

P_ = [f Y,|V|%at d'q+ff Y |V, |? dg dn >0, (30)
3( real rea

where the equality has been omitted since we are considering propagating
waves which carry energy along the +z - direction, The symbol "Re" is
superfluous because the integrals are now real. Smce the radxatzon con-
dition (30) must be valid for arbitrary source distributions in the region

2z < Zy (i. e., for arbitrary Vo and Ve), each of the integrands must satisfy

the inequality whence PC >0 if, and only if,

Yo, e >0 when 3(0, o i8 real. (3

Hence, as stated above, each propagating plane wave must individually
satisfy the radiation condition.

(8a) can now be employed to determine the algebraic sign of
No, e in (23a, b) when *o, e is real. Since the cha.racteristic2 admizttances
must be positive, the sign of ?(o' o 18 identical with that of (A™ + 07 A).
This condition evidently depends on the values of the constitutive para-
meters €, , €,, and is investigated below in detail for a plasma medium.
Eqs. (24) and (31) specify )‘o, e uniquely for all real values of £ and n
(or o), and can be used to determine the analytic continuation of the
function 9(0’ e(o) around branch point singularities located on the real ¢
axis. Some general remarks can be made concerning the determination

of the range of propagating modes for which

N

U JUPow (32)

[]

is positive real. One evidently must have v? . W >0. If W> 0 for
some value of 0, then U2 -W < |U| and 'X e 20 if Uz 0; thus,

both the ordinary and extraordinary modes propa ate when U > 0, and
neither propagates when U<0., If W< 0, then JU -W > IUI; in this

instance, the ordinary mode propagates for U 2 0 while the extraordinary
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" mode does not. The points 03 4 at which U2 -W=0, or A =0, are obtained

2 2
03,4-26[ai\/6 -1]. (33)

If 8§ >1, these points lie on the real daxis and give rise to 0- intervals

from (4e) as

for which 'xo, o i8 complex.

While the specification of the function Xo’ e (0), when real, can
be carried out analytically from a study of (31), there also exists a simple
graphical procedure utilizing the dispersion curves 9f(0) vs. 0 which locate
the real solutions of the dispersion relation in the 34 - ¢ plane (see (A9) and (Al5) ).
For a plasma. medium under the influence of a steady external magnetic field,
these dlspersxon curves fall into various separate categories (dlstmg\ushed
by different ranges of the values of the applied signal, plasma, and cyclotron
frequencies) and have been investigated in great detail in connection with plane
wave propagation in the ionosphegé?'3?ﬁ3gé.rticular, it has been shown that a

plane wave characterized by the variation

e'Jk'-§X+TIY+W(U)Z]= e KR I (34
wherep = Xq £ + Yo O + Z, ¥ is the wave normal, carries real power in
a direction perpendicular to the dispersion curve at the point (§, n, 9¢),

and that the angle between the real part of the complex Poynting vector S
and the wave normal is less than 90°, 1o 35-’I‘he direction of energy flow is
commonly called the "ray" direction, and the above-mentioned relations
are schematized in Fig. 4 for a typical case for which the dispersion curve
has a closed and an open branch, The dispersion curves (or refractive

*
index curves ) can be shown to be rotationally symmetric about the d.c.

*Upon writing exp[-jkg' EJ = exp[ -jpk- 1] ,» where k is the wave-
number defined in (3d) and the vector k is parallel to P, one may interpret

p as the refractive index (with respect to a medium having a dielectric
constant ¢ = ¢ ¢ ) for the wave traveling in the direction k. Since pz- 9( + oz,
the distance from the origin to the  vs. 0 surface yields the magnitude of p
as a function of the polar angle 8 measured from the direction of the applied
d. c. magnetic field. Hence, this surface also constitutes the "refractive
index surface" for the medium; the latter designation is used extensively

in ionospheric propagation theory.
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(See Fig. 4 in Appendix C)

magnetic field direction (z axis) whence a cross-section in the x ~z plane
suffices. In Fig. 4, the spatial coordinate axes have been superposed
upon the R - £ axes, so that the vector directions of the wave normal
and ray are directly those in the x - z plane.

The radiation condition (31) can now be interpreted as cor-
responding to those values of 'XO, ¢ and o for which Re § has a component
in the + z direction, Since p - (Re §)>0, the pertinent segments of the
dispersion curves are those shown shaded in Fig, 4, One notes that it
is possible to havep - z = ¥ <0 while (Re ) * z >0, corresponding
to a "backward" wave in which the directions of energy and phase propagation
along z are opposite. While this simple graphical construction allows the
identification of those portions of the dispersion curve which contribute
propagating waves carrying power in the positive z-direction, it gives no
information as to which curve segments correspond to ‘)fo or xe as defined
in (23a,b). The assignment of the proper ordinary and extraordinary
branches defined herein requires a further study of the behavior of the
functions U and W as discussed in connection with (32), These remarks

are developed further in the next section where we analyze in detail the

nature of the dispersion curves, and the associated disposition of ’xo e
’

for a plasma medium.
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IV. The function ¥(c) for a plasma medium

An ionized plasma medium under the influence of a steady external

‘magnetic field Ho along the z-axis can be characterized by the following

2 .
constitutive parameters: ' (
2 2 2 2
w. W W W W
- cp - ;
£, = 1+ L ’ € = T ’ € = 1= ’ (35)
1 (wi - 4.02)(«)2 - w;i) 2 (wzc - wz)(w - w;) z w

where w, w_and w, are the angular applied, plasma, and cyclotron frequencies,
respectively. In this simple description of a plasma, only the electrons are
considered mobile, and collisions with ions and neutral particles are neglected;
also, the impressed a.c. field amplitudes are required to be small. In terms
of the electron density N, the electronic charge e, and the electronic mass m,

. one may express w‘p and w_ as:

ep H
mz . eN , W = ——2e (35a)
P me c m

To assess the properties of f{as a function of 0, it is necessary to

" investigate the behavior of U and W (see (8b) for €, > 0) for various values of

W W wp. To facilitate this analysis, the parameters 30 ch/(cl +1), dzz, og, ci
have been plotted in Fig. 5 as functions of w. Fig. 5(a) pertains to the case
wp< W r while wp> w, in Fig. 5(b). If a scale for o is superimpoaed along the
positive imaginary axis, the plot may also be used to exhibit the ranges of o
which, at a given frequency w, correapond to propagating (real 3t) or non-
propagating (complex ) waves (see (32) et seq.). These propagating wave
domains have been shaded in Fig. 5; no propagation obtains outside the shaded
regions, Since the defining expressions for ’fo, o change when €, < 0, i.e.,
when w< wp (see (Al3) ), a separate scale for o’ along the negative vertical
axis is used in this range. The frequency domain is subdivided naturally into
the various intervals exhibited in Fig. 5. w and Wy denote, respectively, the
larger and smaller of the frequencies for which o% = 0, w, corresponds to
e, = 0, while Zel/(cl +1) = cg at w,.

The behavior of )(’o’ e for waves satisfying the radiation condition at
z = +% in the various frequency ranges is summarized in Table I. The first
column lists the branch point singularities which lie on the positive real c-axis
in the crdinary and extraordinary integrals. The notation a.+ or a_ signifies that
a branch point lies at 0 = a, and that the path of integration is indented around it
into the upper or lower half of the o-plane, respectively. To each a~ there cor-
responds a (-a)+ , i.e,, a branch point on the negative real axis, which is not

listed explicitly.
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Typical dispersion curves in the various frequency ranges are shown
in the left half of Fig. 6. These curves represent the real ¥ - o solutions
of Eqs. (A9) or (Al3) and the portions corresponding to the ordinary and extra-
ordinary waves, as defined in (23a,b), are labeled "o" and "e", respectively. *
(If no curve is shown, the corresponding wave type does not propagate in this
frequency range). The singularities of '3(0(0) and Q{e(o) along the real C-axis
3, 4 in (33)
lie on the real axis only when & = }:2/(f:1 -1) = w/wc >1}). On the darkened

are exhibited in the right half of the figure. (The branch points at ¢

segments, M is real; elsewhere it is complex. The proper continuation of the
functions 9(0’ e (o) around the various branch point singularities is effected in
accord with conditions (24) and (31), as summarized in Table I. To render
these functions unique in the multisheeted complex 0-plane, branch cuts have
‘been drawn. This partitioning removes any ambiguities as to the disposition

of the integration path with respect to singularities of Xo, e the path is dis-
torted around the branch points in a manner illustrated in Fig. 6(a) (a trans-
formation of variables in (7a, b) from § - n to 0 can be accomplished via (Bl) ). *x
The integrands in (7a, b) will generally also contain pole singularities on the real
0 ~axis which must be investigated separately. Such an investigation has been
carried out in connection with the problem of radiation from an anisotropic half
space (see reference 8). The discussion herein suffices for the complete analysis
of radiation in an infinite anisotropic medium where pole singularities do not
arise. Application of these results to the detailed study of the far field radiated
by a dipole source is to form the subject of a separate publication (see also .

reference 8).

%

The asymptotes of the open branches of the dispersion curves (Figs. 6c, d, f, i)
can be found by looking for real &, o solutions in (A9) and (Al5) as ¥, c~> >,
Solutions exist only when cl< 0, in which instance € + ,/ €, © as g =» o,
The open branches arise for the ordinary and extraordinary modes when cz> 0 and

‘€ . < 0 respectively.

ok ‘ i R

If the range of propagating modes extends to 0>+ ® (see Figs, 6c, d, f, i),
absolute convergence of the integrals can be secured by deforming the end points
of the integration path away from the real ¢ - axis into a region where the integrands

decay exponentially.
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Case Singularities Range of propaga- Sign of W

{(on real axis)

ting modes

(when' real)

A 1Y, 05, 0} o?<1
+ - ¢ 2
w>w1 cz. 03, 04 c <cz
B 1*, o3, o} o<1 N 20
W, W>w Ch c+ none
1 2 3’ "4
- . s ;'i
+ -+ 2 2_ 2 " Togk
w,> w>w oo, of none
2 3 3 4
+ - ¢ 2 2_2 L ’
D 1 » O35 Oy c <], 0y <G < 3«=o>0. .“°<0
- + 4+ 2. 2_ 2
w3> w> max(o)"wc) O30 O 49 0p 04<c <oz }Qe>0
E c; oz< o, 3(0>'Q
+ 2 0 >
mc>w>wp 1 o<1 ﬁ.(e.>0
+ 2 1.2 R
F Io| < |0l %,>0
, 2
mn(wp. wc)> w> W, none 0°< o ze>o
G none none e
+ 2 2
wp>w> max(w, o ) |oz] o< |°z| x>0
_H ";o 0: none
w,> 0> w oo, o none
4 c 3' V4
"».
I none none R
min(w,, w )>w>0 none o2< w x>0

A
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Appendix A.
Determination of the vector eigenfunctions

The transverse electromagnetic fields excited by arbitrary electric
or magnetic current distributions in the anisotropic medium are to be repre-
sented as a superposition of transverse vector modal solutions which indivi-
dually satisfy the source-free field equations and the boundary conditions in
the transverse domain. To eliminate the z-dependence from (3a,b), charac-
terized by the translation operator a/az, we assume a separable representa-
tion of the form

-jkaf z
E ) =5 (x y)e Y. k=kg [e >0, (Ala)

Z

-kal z
H, () =Y, B (x, y)e (Alb)

where Xi and the normalization parameter Y, are constant, and the subscript i
represents the modal index. Egs. (3a, b) then define the vector eigenvalue

problem for the transverse mode functions Ei and Ei:

2 = ] vtvt My

¥ E Y ULt -(Eixz,o),g= =2, (A2a)
i vtvt -

AR .('z'°xsi)'  A2b)

Since the transverse (x - y) domain is unbounded, the eigenfunétions have

a plane wave dependence characterized by

scmele, me SREXTAY B Ky, gy etk Bty y

-1

where the continuous spectrum of the normalized wavenumbers § and n runs

over the values - © < (§, n) < ©, and the factor (k/21r) has been included
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for convenience in normalization. Since the operator Vt in (A2a,b) is now
replaceable by -jko , 0 = (zog + xo'q). one obtains the algebraic equations

for the transverse position vectors e and h (for fixed £ and n),

. ,(_e_ = Y;B . (bx_z_o), Ygx(hx -Eo) = § ‘e, | (A4)
. where R and § are self-adjoint 2 x 2 dyadics (note: £, = 2‘: ) }
Do _ ) ot
R=1,700=R", 5 =g -(z,x lz,x0) =§ (Ada)

The luperscnpt denotes the a.dJomt operator. Eqs (A4) can be re-expressed

as the elgenvalue problem

2
]2.3:)(3. B’*’.(hxiQ):X(b_xEo), E:R S,
(A5)
It follows from the theory of linear operators that the two exgenvectors e and

hxz belongmg to the same eigenvalue 2(2 satisfy a bi- orthogonahty relation as
in (5). The subscripts o and e are employed to distinguish the two posslble eigen-
values, and associated eigenvectors, in (AS5).

Eqs. (A5) are solved readily in a basis comprising the orthogona.l

pontlon vectors ¢ and g x z, wherein we represent

e=ac+boxz , h=co+daoxz . (A6)

- -7 =0

A straight-forward calculation leads to

a a c c
- z a
) - % : p* = 2 L (A7)
b b d d
e, (1-0?) -jey(1- o?)
P—= ) 2 ’ 0 = £ +1q ’ (A7a)
e, (c1 -0)

from which one obtains the normalized eigenvectors in (4a, b).

v
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The eigenvalues ) cZ) e 2TC the two solutions of the dispersion equation
]

Yo, o) = det (P -+ = 0 (A8)
or
2 2 2
1(4 + *2[ oz(c1+1) - ch] + € ot (clz— eg +el)o +eg -e, = 0, (A9)
which yields
2 2 '
wo = U % /U - W = U i[cl-l)A/Z, (A10)
é
with U, W, and A defined in (8b) and (4e), respectively, Evidently,
‘ '}(i = }(:z when -U‘2>W (A real) , .  (Alla)
e e
and
"&z ='x’;z when UZ< W (A imaginary) . | (Allb)

(A9) is the "Booker quartic® for the longitudinal wave number¥ ( 3 is
identical with Booker'!s q, save for the normalization to k instead of k ; l.e.,
q= J—Q{)(see reference 3, Eq. (13.13), with p = 6 = 0).

The subscripts o and e distinguish the two solutions corresponding
to the + and - signs in (Al0), respectively. The respective definitions ®extra-
ordinary*® and ®"ordinary" are commonly applied in plasma theory to those real
solutions of the dispersion equation which correspond to waves whose propagation
in a direction transverse to the z-axis is, or is not, affected by the presence of
the d. c. magnetic field (along z).* Transverse propagation corresponds to
A = 0; for the ordinary mode one then has o= 1, while for the extraordinary
mode, o #1. It has been customary to label as Yordinary® and "extraordinary®
those (real) branches of the M vs. o (dispersion) curves which do, or do not, pass
through the points %= 0, 0= +1. For our purposes, however, it is more
significant to effect a definition on the basis of the analytic properties of the
multivalued functions ¥} o (o) and 7‘e (o) as defined in (8a). The resulting appor-
tionment, between ‘3(0 and a(e » of the real branches of the dispersion curves
will then not necessarily coincide with that mentioned above (see Sec. IV).
We have nevertheless retained the terminology "ordinary® and ®extraordinary®
for the o-and e-solutions, respectively, because the real solutions ofxo do
generally include the points )(o = 0, 0, = & 1,

* When the magnetic field is absent, £, = 0and €] = 1.
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From (A4) and the orthogonality relations (5), one deduces for

the characteristic admittance Y:

o
v _ 1 _ Eo,e. 5 -e-o,e - . xo. e (AlZ.)
o, e Z - ‘R .
o, e gxo,e gll-Onexﬁo R ho.exﬁo ‘

Substitution of (4d) into the last expression in (Al2) yields formula (8a).

If one of the.regions is liso_tropic, €, = 1and £y = 0 so that £ -1't .
In this instanée, 3‘2 = 9(2 =1- 02, and it is convenient to choose the
conventional linearly polarized E mode (single primes) and H mode (double
primes) eigenfunctions :

, e"= h'xz = — 9% (Al3)
- - " =0 g

QlIQ

e = h'xz =
e — T >0

It can then be shown that the resulting transverse field representation is

still given by (7a, b) provided that we replace all subscripts o by single primes
and all subscripts e by double primes.* The E and H mode volfages v, vn
and the currents I', I" satisfy the transmission line equations (8), with the

characteristic impedances defined as

2o e Mmoo b as fF . e

The equivalent network for the mode coupling produced by a plane interface

between an isotropic and an anisotropic region can then be deduced by proceeding

"as in (10) - (11).

If e < 0, i.e., = -j|k|. the normalization of the transverse and
longitudinal wave numbers §, 1, and 0 is taken with respect to |k| . Hence,
k in (Ala) and (A3) should be replaced by |k| , whence { in (A2a) is defined as

uo/le | . The resulting eigenvalue problem is then found to be the same as
in (A5) provided that one replaces oby (+j0) and S by (-§). The dispersion

relation is now given by

2 2 2 2 2
+(£1-cz+£1)0 tel-e,

i.e., (A9) applies provided that 3(2 and 02 are replaced by (-xz) and (--(‘52"),--..I

4 = 0, (Al5)

respectively, Finally, the eigenvectors are given as in Eqs. (4), if k and 0

% ‘
The validity of the formal expressions obtained via this replacement does

not necessarily imply that the E and H modes correspond to the limiting

values of the o - and e - modes, respectively, as ¢

t‘—’-l-t .



B T

PIBMRI-1069-62 A5

are replaced by |k| and (+j0), respectively (note: 0->+jd). In summary,
formulas (7) - (9) appropriate to ¢ <0 can be obtained from those for €,> 0

by letting \/::-ﬁ-j |\l€z |. o ""'j'G' oH-+iA.
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Agzendix B.

Cylindrical wave representation of the ficlds

Instead of the plane wave representation in (7a, b), it is frequently
more convenient to employ a cylindrical wave representation based on the -

well-known transformation

fwdgﬁﬂ (o) e'.ik(§ x+ny) +jk (€ x! + Y

I =
- 00 -Q
00 . 00 .
= 2n ), e -in(d- ¢') [ of (o) I, (kep)J_(kap') do, k>0, (B1)
n=-o o

. where

o=./§z+nz R x =pcosd, y = psing, x' = p*cos¢', y*' = ptsint.
(B2)

Each of the constituent integrals in (7a, b) resulting upon substitution of (4c, d)
can be reduced to the form I upon observing that the vector 0 can be replaced
by the vector operator (j/k) Vt » and that the differentiation and integration
operations can then be commuted. The scalar constituents of Lo, e andho. e
remaining in the integrands are functions of 0 only. The voltage and current
Vo, e and Io, e 3T solutions of the differential equations-(8). Since the para-
meters R, Y, Z, i, v in this equation depend on (£, n) only through o, as do
the coupling matrices (11) and (15) descriptive of interface or terminal effects,
Vo' e and Io, e €30 be expressed as functions of o only, and a cylindrical wave
representation is effected as in (Bl). The explicit appearance of the factor
exp [jk(ﬁx‘ + qy')] in the integrand of (Bl) results from consideration of a
point current element located at = (x' y', z') - 2 (p', ¢, 2') (cf.(9a,b)). The
expression for a distributed source is obtained by integration over the source
point coordinate r?.

If f(o) = f(-d, i.e., f is an even function of G the o integral can be
converted to run over the entire real g- axis:

0 ]
- )

2 of of (9 Jn (kop) J‘n(kopl) do = oo‘£'j"0f (o) Jn(op<) Hi (op>) do. (B3)

P and p_ denote the greater and lesser of the variables p and p', respectively,
The second representation in (B3), involving an infinite integration conteur, is

particularly convenient for an asymptotic evaluation of the integral.
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Fig.
Fig.
Fig.
Fig.
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Fig.

AEEendix C
Figure Captions

1 - Physical structure and associated network problem

2 - Equivalent network for interface between two gyrotropic media
3 - Definition of traveling and standing wave quantities

4 - Dispersion curve, wave normal, and ray

5 - Frequency dependence of various plasma parameters

6 - Dispersion curves and singularities on Re 0 -axis

The dispersion curves on the left show the behavior of { vs. ©
for propagating waves in various frequency ranges; the designations
to® and "e" distinguish the ordinary and extraordinary branches,
respectively. Singularities due to 9(0’ e(c) on the real - axis are
shown on the right. The dark segments denote propagating wave
regions.
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Douglas Aircraft Company, Inc.

3000 Ocean Park Boulevard

Santa Monica, California

Attn: Peter Duyan, Jr.
Chief Electrical/Electronics
Section

Douglas Aircraft Company, Inc.

2000 North Memoiral Drive

Tulsa, Oklahoma

‘Attn: Engineering Librarian, D-250

The Electrada Corporation
11244 Playa Street
Culver City, California

Attn: S. Stanley lLocus, Section Head

Microwave Engineering

Electramagnetic Research Corporation

" 5001 College Avenue

College Park, Maryland
Attn: Mr. Martin Katzin

Electronics Camnunication
.1830 York Road
Timonium, Maryland

Electronic Specialty Company
5121 San Fernando Road
Los Angeles 39, California
Attn: Donald L. Margerum
Chief Engineer, Radiating
Systems Division

Emerson and Cuming, Inc.
863 Washington Street
Canton, Massachusetts
Attn: Mr. W. Cuming

Emerson Electric Mfg. Co.

8100 West Florissant Avenue
St.Louis 21, Missouri

Aitn: Mr. E.R. Breslin, Librarian

Fairchild Aircraft-Missiles Division
Fairchild Eng. and Airplane Corp.
Hagerstown, Maryland

Attn: Library

ITT Federal Laboratories
Technical Library

500 Washington Avenue
Nutley 10, New Jersey

Gabriel Electronics Division
Main and Pleasant Streets
Millis, Massachusetts

Attn: Dr. Edward Altshuler

General Electric Company
Electronics Park
Syracuse, New York
Attn: Documents Library
B. Fletcher, Building 3-143A

General Electric Campany

Missile and Space Vehicle Department
3198 Chestnut Street,

Philedelphis, Pennsylvanias

Attn: Documents Library:

General klectric Company
3750 D Gireet
Philadelphia 24, Pennsylvania
Attn: Mr. . G. Lew
Missile & Space Vehicle Dept.

General Precision Lavoratory, Inc.
63 Bedford Road

Pleasantville, New York

Attn: Librarian

Goodyear Aircrafi Corp.
1210 Massillon Road
Axkron 15, Ohio

Attn: Librery, Plant G

Granger Associates
Blectronic Systems
974 Commercial Street
Palo Alto, GCalifornia

ttn: John V.N. Granger, President

Grumnan Aircraft Engineering Corporation
Bethpage, Long Island, New York
Attn: Engineering lLibrarian, Plant #5

Hallicrafiers Company
LiOL Yest 5th Avenue
Chicago 2h, Illinois
Attn: LaVerne laGioia, Librarian



Battelle Memorial Institute

505 King Avenue

Columbus 1, Ohio

Attn: Wayne E. Rife, Project Leader
Electrical Engineering Division

Bell Alrcraft Corporation

Post Office Box One

Buffalo 5, Nev York

Attn: Eunice P, Hazelton, Librarian

Bell Telephone Laboratories
Murray Hill
Nev Jersey

Bell Telephone laborstories, Inc.
Whippany Labvoratory

Whippany, New Jersey

Attn: Technical Information Library

Bendix Corporation

Pacific Division

11600 Sherman Way

North Hollywood, California
Attn: Engineering Library

Bendix Radio Division

Bendix Aviation Corporation

E. Joppe Road

Towson L, Maryland

Attn: Dr. D, M. Allieson, Jr.
Director Engineering & Research

‘Bjorksten Research laboratories, Inc.
P.0. Box 265

Madison, Wisconsin

Attn: Librarian

Boeing Airplane Ccampany

Pilotless Aircraft Division

P.0. Box 3707 g e
Seattle 24, Washington

Attn: R.R. Barber, Library Supervisor

Boeing Airplane Company
Wichita Division Engineering Library
Wichita 1, Kansas
Attn: Kenneth C. Knight
Library Supervisor

Chance Vought Aircraft., Inc.
9314 West Jefferson Sireet
Dallas, Texas

Attn: A.D. Pattullo, Librarian

Chance Vought Corporation
Vought Electronics Division
P.0, Box 5907

Dallas 22, Texas

Chu Associates

P.0. Box 387

Whitcomb Avenue
Littleton, Massachusetts

‘Collins Radio Compeny

855 35th Street; N.E.
Cedar Rapids, Iowa
Attns Dr. R.L. McCreary

Convair, A Division of Genenl Dynamics
Fort Worth, Texas °
Attn: K.G. Brown

Division Research Librarian

Convair, A Division of General Dynamics
3165 Pacific Highway
San Diege 12, Californis
Attn: Mrs. Dora B. Burke,
Engineering Librarian

Cornell Aeronautical Laboratory Inc.
L455 Genesee Street

Buffalo 21, New York

Attn: Librarian

Dalmo Victor Campany

A Division of Textron, Inc.

1515 Industrial Way

Belmont, California

Attn: Mary Ellen Addems
Technical ILibrarian

Drne and Margolin, Inc.
29 New York Avenue
Westbury, Long Island, N, Y,

Alrcraft Division

Douglas Aircraft Compeany, Inc.
3855 Lakewood Boulevard

Long Beach, California (USA)
Attnt Technical lidbrary
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ladio Corporation of America
Defense Elecironic Producis
Adveanced Military 5Lystems
Princeton, New Jersey

Attns Mr. David Ghore

Director, USAF Projec: [AND
via: AF Liaison Office

The Rand Corporation

1700 Main Street

Santa Monica, California

The Rand Corporation

1700 Main Sireet ‘
Santa Monice, California
Attn:  ‘lechnical Library

Rantec Corporation
23992 Veniura Boulevard
Calabasas, California
ttn: Grace Keener, O0ffice lanager

Raytheon Campany

Jtate Road, Wayland Laboratory
Wayland, Massachusetts

ttn: Mr. Robert Borts

Raytheon Company

Wayland Laboratory

Wayland, Massachusetts

Attn: Miss Alice C. Anderson,Librarian

Raytheon Company
Missile Systems Division
Hartwell Koad

Bedford, Massachucetiis
Attn: Donald H. Archer

Remington Rand UNIVAC

Division of Sperry Rand Corporation
P. 0. Box 500

Blue Bell, annsylvania

ttn: Engineering Library

Republic Aviation Corporation
Farmingdale, Long Island, New York
Attn: Engineering Library .
Thru: AF Plant Repr. Republic
Aviation Corp. Farmingdale,
Long Island. New York

ilyan Aeronautical Company
270l llarbor Drive
Lindbergh Field

San Diego 12, California
Attn: Library

3age Lavoratories, Inc.
3 Huron Drive
Natick, Massachusel.is

Sanders Associates, Inc,
9% Canal Jtreet

Nasiwua, lNew Hampsiire
AL:n: Mr. Lorman i, VWild

Candia Corporation

P.C. Box 9300

Albuquerque, New lexico

Atin: HKecords Management &
Services Department

:‘:tca.nvcll Laboratlories, Inc.
5001 Scanwell Lane
Springfield, Virginia

5TL Technical Library

Documen: Acquisitions

Space Technology Laboraiories, Inc.
P.0. Box 95001

Los Angeles L5, California

sperry Gyroscope Company
Great Neck, Long Island, New York
ttn: Florence ‘. Turnbull
Sngineering Librarian

Jtanford Research Institute
Documents Center

Yenlo Park, California
Attn: A-quisitions

Sylvania Electric Products, Inc.
100 First Avenue
Waltham 54, Massachusetts
ttn: Charles A. Thornhill, Report
Librarian, “altham Laboratories
Library

Sylvania Slec. Prod. Inc.
Electron'c Defense Laboratory
P.0. Box 205

Mountain View, California
Attn: Library
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Camanding Genexal

USASRDL
Fort Momouth, Nev Jersey
Attnt  SIGIM/EL-AT

Cammanding Gemeral
UsSe Army Ordnance Missile Command

’

Redstone Arsenal, Alabema P S
, Attn: Techmical Librery T

Dejartamnt of the Amy

Office of the Chief Sigmal Omccr
Washington 25, D.C.

Attn} GRD-‘.-Z

Office of Chief Signal Officer
Engineering & Technical Division
wm 25’ D.C.

- Attn: SIGNEYT~5

Guided Missile Fuze Library

Dismond Ordnance Fuze lLaboratories

Washington 25, D.C.

Attas R.D, Hatcher, Chief Microwave
Develomment Station

Advisory Group on Elsctronic Parts
Roam 103, Moore School Building
200 South 33rd Street .
Fhiladelphia 4, Pemnsylvania

ASTIA (TIPAA) TR
Arlington Hall Statiom ,
Arlington 12, Virginia

National Asronautiocal Space Agency
Langley Asronsutioal Research Laboratory
langley, Virginis

Attas MWr. Cliff Nelson

Iibrary

National Buresu of Standards
Boulder Laboratories et
Boulder, Coloredo

National Bureau of Standards
U.S. Department of Commerce

vashington 25, D.C.
Atths Mr, A.G. MoNish

National Bureau of Standards

Us.S, Depar‘ment of Commerce s

Washington 25, DQCO

Attn: Qustave Shapiro, Chief,
Engineering Electronics Section
Eleactricity and Elsctronics Div.

Director

National Security Agency

Fort George Ge. Meade, Maryland
Attns C3/TDL

AFCRL, Office of Asrospace Research
CRIPA=Stop 39

LeGs Hanscam Field,
Bodford, Massachusetts

S

Defence Research Mexbhar
Capadian Joint Stafet

2450 Massachusetts Avemus., N.H.
Washington 8, D.C.

AFCRL, Office of Asrospace Revearch (CBRD)
Attn: Contrect Files L
L. G. Hanscam Field CIRNAAS (s
Bedford, Massachusetts A

ARCRL, Office of Aerospace Research (CRRD)
Attn: Carlyle J. Slettem'

L.G. Hanscom Field A
Bedford, Massachusetts -

Bq. ESD (ESRDW, Major Jobhn J, Hobaon)
L. G. Hanscam Field
Bedford, Massachusetts

Elsctronic Systems Division (AFSC)
Techmionl Information Services Div, (ESAT)
L. G. Aanscam Field

Bedfoxrd, Massachusetts

Hqe AFCRL, OAR (CRIP, J.R. Marple)
L, G. Hanscom Field
Bedford, Massachusetts

Chief, Buresu of Ships
Department of the Navy
Washington 25, D.C.
Attn: Code 690
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RADC (RAYLD) .
Attn: Documents Library
Griffiss ArB, New York

RADC (RCH)
Attn: Or. Jonn ., Durgess
Criffiss A3, lew Yorl '

AF Missile Dev, Cent. (MGRT)
Holloman AFB, New Mexi-o

Director of Resident Training
3380th Technical Training Group
Keeslexr AFD, Mississippl

Attn: 0A=3011 Course. .

AUL
Maxwell AFB, Alabama

AFCRL, CAR (CRRIM, Gersld ieltz)
Le.G, Hanscom Field
Bedfoxrd, Massachusetts

Harvard University

Gordon McKay laboratory

9 Oxford Street

Cambridge 39, Massachusetts
Attn: Ronald W. Pe King
Prof, of Applied Physics

Harvard University

Gordon McKay laborstory

9 Oxford Street

Osmmbridge 385, Massachusetts
Attn: Prof. 5. R, Seshadri

AF Missile Test Center
Patrick AFB, Floriaa
Attn: AFMIC, Tech Library, MU=135

ASD (ASAPRD - Dist)

- Wright-Patterson AFB, Ohio

USAF Security Service (CIR)
Sen Antonio, Texas

Hq. USAP (M4/E)
Cammmniocations=Electronics Directorats
Washingtom 25, D.C.

AADD (WCLit3A, Mre Portune)
Viright=Patterson A}, Ohio

Al (ATINLe3)
Attn: ir. Paul Springer
Wright-Patterson ArB, Chio

Director, Electronics vision

Aly Technical Intelligence Center
Attn: AFCIL=4ELl, Colonel .K. Gilbert
Wright-Patterson AFH, Ohio

WADD (WWDRTR, Mr. A.D. Clark
Directorate of Lystem Engineering
Dyna Soar Engineering Orfice
Aright-Patterson AFB, Onio

Lt.. Col ‘Tensen (SSRTW) -
Space Systems Division

Air Force Unit Post Office
Los Angeles 45, California -

Director

UsSe Army Ordnance

Ballistic Research laboratories
Aberdeen Proving Ground, Maryland

Attn: Ballistic Measurements Laboratory

Ballistic Research Laborstories
Aberdeen Proving Ground, Maryland

. Atin: Technical Information Branch

Director

Evans Sigmal laboratory
Belmar, Nev Jerse;

Attn: Mr, 0,C, Woodyard

Camanding General

USASRDL

Ft., Mommouth, New Jersey

Attn: Tech. Doce Ctr. SIGRA/SL~ADT

Technical Information Office
European Office, Asrospace Research
Shell Building,. 47 Cantersteen
Brussels, Belgium

Massachusetts Institute of Technology
Signal Corps Liaison Officer
Cambridge 39, Massachusetts

Attn: A,D, Bedrosimn, Roam 26=131

Camanding Generul, SIGFM/EL-PC
USASRDL
Tort Mormouth, New Jersey
Attnt Dr, Horst H. Kedesky
Deputy Chief, Chem~Fhysics Branch



